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J Appl Physiol 119: 1297-1302, 2015. First published October 1,
2015; doi:10.1152/japplphysiol.00499.2015.—It is known that re-
peated bouts of high-intensity interval training (HIIT) lead to en-
hanced levels of glycolysis, glycogenesis, and lactate transport pro-
teins in skeletal muscle; however, little is known about the molecular
mechanisms underlying these adaptations. To decipher the mechanism
leading to improvement of skeletal muscle glycolytic capacity asso-
ciated with HIIT, we examined the role of hypoxia-inducible fac-
tor-lae (Hif-1av), the major transcription factor regulating the expres-
sion of genes related to anaerobic metabolism, in the adaptation to
HIIT. First, we induced Hif-1ae accumulation using ethyl 3,4-dihy-
droxybenzoate (EDHB) to assess the potential role of Hif-la in
skeletal muscle. Treatment with EDHB significantly increased the
protein levels of Hif-1a in gastrocnemius muscles, accompanied by
elevated expression of genes related to glycolysis, glycogenesis, and
lactate transport. Daily administration of EDHB for 1 wk resulted in
elevated glycolytic enzyme activity in gastrocnemius muscles. Sec-
ond, we examined whether a single bout of HIIT could induce Hif-1a
protein accumulation and subsequent increase in the expression of
genes related to anaerobic metabolism in skeletal muscle. We ob-
served that the protein levels of Hif-1a and expression of the target
genes were elevated 3 h after an acute bout of HIIT in gastrocnemius
muscles. Last, we examined the effects of long-term HIIT. We found
that long-term HIIT increased the basal levels of Hif-1a as well as the
glycolytic capacity in gastrocnemius muscles. Our results suggest that
Hif-1a is a key regulator in the metabolic adaptation to high-intensity
training.

anaerobic metabolism; gene regulation; Hif-1a; high-intensity train-
ing; skeletal muscle introduction

HIGH-INTENSITY INTERVAL TRAINING (HIIT) is a type of physical
training, consisting of repeated high-intensity exercise alter-
nated with rest periods. There is a growing understanding that
HIIT, which is performed at higher intensity but for shorter
time period compared with traditional endurance training,
induces more time-efficient stimulus to increase aerobic capac-
ity in skeletal muscle (2, 6).

Previous studies have reported that HIIT activates molecular
signaling pathways linked to peroxisome proliferator-activated
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receptor gamma coactivator-lac (PGC-1a), which is well
known as a master regulator of mitochondrial biogenesis, in
both rodents (31) and humans (2, 15). Skeletal muscle glyco-
lytic capacity could also be altered with HIIT, as a conse-
quence of the increase in the enzymes involved in muscle
glycolysis and glycogenesis, such as phosphofructokinase
(Ptk) (10, 14), lactate dehydrogenase (Ldh) (14), and glycogen
synthase (Gys) (3). Recently, the protein levels of monocar-
boxylate transporter 4 (Mct4), which facilitates lactate release
from muscle cells, were shown to increase with HIIT (9, 20).
However, although previous studies have shown HIIT leads to
enhanced levels of the proteins involved with anaerobic me-
tabolism, the molecular mechanism underlying these adapta-
tions is unknown.

Recent studies indicate that hypoxia-inducible factor-la
(Hif-1a) is involved in the fast muscle phenotype. Hif-1a was
initially identified as an important protein for hypoxia adapta-
tion (23). Hif-la is mainly degradated in normoxia by the
prolyl hydroxylase (Phd) pathway, while Hif-1a accumulates
in hypoxia with the decline of Phd activity. Inhibition of Phd
with ethyl 3,4-dihydroxybenzoate (EDHB) induced Hif-la
protein accumulation in at least liver and kidney, and whole
body hypoxic tolerance (11). A previous study reported that
EDHB treatment increased vascular endothelial growth factor
(VEGF) expression in rat skeletal muscle (28). Under hypoxic
conditions, the energy metabolism of the cell shifts from
aerobic to anaerobic, and Hif-1o contributes to this shift via
upregulation of glycogen metabolism gene transcription (25).
The glycolytic enzyme genes Ptk and Ldh are the main targets
of Hif-1a (33), although glycogenesis enzyme genes and the
lactate transporter gene are also regulated by Hif-1a (21, 32).

In skeletal muscle cells, the protein levels of Hif-la are
observed even under normoxia condition and higher in fast
muscles than in slow muscles (22). In addition, upregulation of
Hif-1a induces a transition from slow to fast muscle phenotype
(17). Previous studies have shown that an acute bout of
strength training, considered to improve the muscle anaerobic
capacity similar to HIIT, increases Hif-1a expression in hu-
mans (1) and mice (17). These results imply that Hif-1a has a
pivotal role in glycolytic capacity enhancement through HIIT.
Therefore, in the current study, we examined whether Hif-1a
affects the expression of genes related to glycolysis, glycogen-
esis, and lactate transport and whether an acute bout of HIIT
alters the protein levels of Hif-1a. Further, we investigated the
effect of long-term HIIT on the basal levels of Hif-1a.
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Table 1. Primer sequences for gRT-PCR
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Target Gene Forward Primer (5’ to 3")

Reverse Primer (5’ to 3')

Actb ACAACGGCTCCGGCATGTGCAAA ACCCATTCCCACCATCACACCCTGG
Gysl GTCCTCGCTTCCAGGATTGG GTGTAGATGCCACCCACCTTG

Hk2 GGCTAGGAGCTACCACACAC AACTCGCCATGTTCTGTCCC

Ldh-a TGTTGGGGTTGGTGCTGTTGGCAT AACAAGGGCAAGCTCATCCGCCAA

Mct4 GGCGGACAGAGGCAGATACA GCTTTCACCAAGAACTGAGCTG
Pfkm ACAATCTGCAAGAAAGCAGCG TACCTTGGGCATCTCCACCA
Pygm GTACAAGAACCCAAGAGAGTGGA CGAGAAGGTTCAACACCCCA
Tbp CTGCCACACCAGCTTCTGA TGCAGCAAATCGCTTGGG

MATERIALS AND METHODS

Animals. All experimental procedures performed in this study were
approved by the Institutional Animal Experiment Committee of the
University of Tsukuba. Male 7- to 8-wk-old ICR (Institute of Cancer
Research) mice (Tokyo Laboratory Animals Science, Japan) were
used in this study. The mice were housed in temperature (23°C *
2°C)- and humidity (55% = 5%)-controlled holding facilities under a
12:12-h light:dark cycle and had ad libitum access to food and water.
Upon completion of experimental treatments, the mice were killed by
cervical dislocation; their lower limb muscles were dissected, quickly
frozen in liquid nitrogen, and stored at —80°C until analysis.

Intraperitoneal ethyl 3,4-dihydroxybenzoate (EDHB) administration.
In this study, we performed experiments using a single dose and a
repeated dose of EDHB. DMSO was used as a solvent for EDHB. All
EDHB injection groups were compared with vehicle injection groups.
In the single-dose experiment, the mice received an intraperitoneal
injection of 250 mg/kg EDHB, and lower limb muscles were sampled
4 h after injection. The repeated-dose experiment was performed for
1 wk. Mice received 100 mg/kg EDHB every day. The dose of EDHB
was selected according to previous studies (11, 28). To avoid the
effect of the last day of EDHB treatment, muscle excision was
performed 24 h after the last intraperitoneal injection.

HIIT protocol. HIIT was based on the protocol in rats described by
Terada previously (30, 31), with minor modifications. Mice performed
a 20-s swimming exercise at most 20 times or until the mouse reached
exhaustion, with a weight equivalent to 10% of their body weight. The
weight was tied near the base of their tail. Between exercise bouts,
mice were landed from water, and a 10-s rest period was allowed.
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Exhaustion was defined as when mice could not rise to surface more
than 3 s. A barrel filled with water to a depth of 60 cm was used for
the swimming exercise, and water temperature was maintained at
35°C during the exercise. Immediately after exercise, blood samples
were collected from the tail, and blood lactate was measured using
portable blood lactate analyzer (Lactate Pro 2, Arkray, Japan). The
mice were exercised at the same time of day, and then randomly
assigned to 3 groups: 0 h (immediately), 3 h, and 6 h after the
swimming exercise. The animals were slaughtered following a timed
sequence at the end of the exercise. Mice in the Pre group were
slaughtered just before the exercise of other groups. All the mice
including the Pre group had performed a practice swimming exercise
for 2 days before the HIIT experiment.

Long-term training protocol. Training mice were randomly as-
signed to HIIT and Sedentary (Sed) groups. HIIT protocol was the
same as above, and mice were trained for 6 wk. To control load, the
weight of each mouse was measured one time per week. HIIT was
performed once per day in the morning (from 9:00 AM to 11:00 AM)
and 5 days/wk. Each rest day was after 2 or 3 consecutive training
days. Muscle samples were taken 24 h after the last training to avoid
the effect of the last bout of exercise. To evaluate exercise perfor-
mance, another six mice per group performed the exhaustion
swimming test (29). The mice swam to exhaustion with a load of
10% body weight, and the time to reach exhaustion was measured.
These mice were not used for any other analysis. The mice swam
to exhaustion with a load of 10% body weight, and the time to
reach exhaustion was measured. The definition of exhaustion was
the same in HIIT protocol.
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Fig. 1. Hypoxia inducible factor-lac (Hif-1ar) accumulation following administration of ethyl 3,4-dihydroxybenzoate (EDHB) leads to an increase in the
expression of genes related to glycolytic, glycogenesis, and lactate transport. A: protein levels of Hif-1a in gastrocnemius muscle of the EDHB group (EDHB)
(n = 8) compared with the vehicle (VHCL) group. a-Tubulin was used as an endogenous control. B: mRNA expression of genes related to glycolysis (Pygm,
Pfkm, and Ldh-a), glycogenesis (GysI and Hk2), and lactate transport (Mct4) in the muscle tissues of the EDHB group compared with the VHCL group. Actb
was used as an endogenous control. *P < 0.05, **P < 0.01 vs. VHCL. All data are expressed as means + SE; n = 10 per group.
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Protein isolation and quantitation. Protein fractions were isolated
from gastrocnemius muscles, and frozen in lysis buffer [S0 mM
HEPES (pH 7.4), 150 mM NaCl, 10 mM EDTA, 10 mM NaF, 10 mM
Na4sP>07, 2 mM NaVOy, 1% sodium deoxychololate, 1% NP-40, and
0.2% sodium dodecyl sulfate] with a protease inhibitor mix (Nakarai
Tesque, Japan) on ice. The homogenates were then centrifuged at
15,000 rpm for 10 min at 4°C, and the supernatants were collected.
Protein levels in the homogenate samples were measured using a BCA
protein assay kit (Nakarai Tesque, Japan). Hif-1a protein was de-
tected by the monoclonal antibody NB100-105 (Novus Biologicals) at
a dilution of 1:1,000. Purity of the protein fractions was validated
using an antibody against a-tubulin (cat. no. 2144, Cell Signaling)
diluted 1:1,000. Horseradish peroxidase (HRP)-conjugated anti-
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Fig. 2. Daily administration of EDHB for 1
wk enhances the activities of glycolytic en-

* zyme. A: hexokinase (Hk) activity compared
between EDHB and VHCL groups. B: phos-
phofructokinase (Pfk) activity compared be-
tween EDHB and VHCL groups. C: lactate
dehydrogenase (Ldh) activity compared be-
tween EDHB and VHCL groups. *P < 0.05,
*#*P < 0.01 vs. VHCL. All data are expressed
as means + SE; n = 10 per group.
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mouse or anti-rabbit IgGs were used as secondary antibodies at a
dilution of 1:5,000. The bands were visualized by a chemilumines-
cence detection system according to the manufacturer’s instructions
(Nakarai Tesque, Japan). Images for each membrane were analyzed
using ImagelJ software.

RNA isolation and quantitative RT-PCR (gRT-PCR analyses).
mRNA was isolated from frozen gastrocnemius muscles using the
Trizol reagent (Invitrogen). The quantity and quality of RNA were
validated with Nanodrop (Thermo Scientific). cDNA synthesis was
performed using the PrimeScript RT Master Mix (Takara, Japan).
qRT-PCR was performed with the Thermal Cycler Dice Real-Time
System using SYBR Premix Ex taq II (Takara, Japan). The PCR
protocol was as follows: denaturation for 15 s at 95°C and
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Fig. 3. A single bout of high-intensity interval training (HIIT) increases the protein levels of Hif-1a and the expression of the target genes. A: comparison of
blood lactate levels before (Pre) and immediately after (Post) a bout of HIIT. **P < 0.01 vs. Pre. B: comparison of the protein levels of Hif-1« in gastrocnemius
muscle before (Pre) and immediately (OH), 3 h (3H), and 6 h (6H) after swimming. C: mRNA expression of Hif-1a target genes at each time point. 7hp was
used as an endogenous control. *P < 0.05, **P < 0.01 vs. Pre. All data are expressed as means + SE; n = 8-9 per group.
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annealing and extension for 40 s at 60°C (40 cycles). The disso-
ciation curve for each sample was analyzed to verify the specificity
of each reaction. The relative mRNA expression levels of the target
genes were determined by the delta-delta Ct method and normal-
ized to the expression of B-actin (Actb) or TATAbox binding
protein (Thp). In a single bout of HIIT experiment, 7hp was used
as an endogenous control, because it has been shown that Actb is
not a good endogenous control in exercise experiments (18). The
primer sequences are shown in Table 1.

Enzyme activity. The activities of Pfk, Hk, and Ldh were measured
to assess the muscle’s glycolytic capacity. Pfk and Hk activities were
determined using the standard procedures described by Shonk and
Boxer (27), and Ldh activity was determined using the standard
procedure described by Chi et al. (4). The samples of HIIT and
Sedentary group were analyzed alternately.

Muscle glycogen measurement. The glycogen content in muscle
was measured as described previously (16). Aliquots of frozen tibialis
anterior muscle were added to microcentrifuge tubes containing 30%
KOH and 3% Na,SO. and then heated at 60°C for 10 min. Glycogen
was precipitated by adding 100% ethanol and centrifuged at 6,000
rpm for 30 min at 4°C. After the supernatants were collected, the
precipitates were desiccated. The glycogen pellets were hydrolyzed
and then treated with 500 w1 of H>SO4 and 100 wl of 5% phenol. The
mixture was allowed to stand for 30 min at room temperature.
Thereafter, the samples were measured spectrophotometrically at 490
nm. The results were expressed as milligrams of glycogen per gram of
tissue.

Statistical analysis. All data were tested for normality using the
Kolmogorov-Smirnov test, and were found to be normally distributed.
The data of the EDHB dosing experiment were analyzed using an
unpaired #-test for comparison between the vehicle (VHCL) and
EDHB groups. Differences in blood lactate expression between the
preexercise group and postexercise group were also tested using an
unpaired 7-test. Multigroup comparisons were performed by one-way
ANOVA, followed by a post hoc test (Dunnett’s test) for multiple
comparisons. For all comparisons, statistical significance was defined
as P < 0.05. Data were expressed as means = SE.

High-Intensity Training-Induced Adaptation through Hif-1aw « Abe T et al.

RESULTS

Effect of EDHB administration on Hif-1« accumulation. To
determine whether Hif-1a has a potential role in regulating the
genes related to glycolysis, glycogenesis, and lactate transport
in skeletal muscle, we investigated the gene expression after
exposure to EDHB, a chemical facilitating Hif-la accumula-
tion (11). In the current study, the protein levels of Hif-1a in
gastrocnemius muscle of the mice increased by ~50% 4 h after
treatment with EDHB (Fig. 1). The expression of genes asso-
ciated with glycolysis (Pygm, Pfkm, and Ldh-a) encoding
glycogen phosphorylase (Pyg), Pfk, and Ldh, were signifi-
cantly higher in the EDHB group. The mRNA expression
levels of Gysl, Hk2, and Mct4, encoding Gys, Hk, and Mct4,
were also significantly increased (Fig. 1). To confirm the effect
of continuous Hif-la protein accumulation on glycolytic ca-
pacity, the mice were treated with EDHB every day for 1 wk.
Continuous daily administration of EDHB increased the en-
zyme activity of Pfk, Ldh, and Hk (Fig. 2). These results
indicate that Hif-1a has a potential role in facilitating anaero-
bic metabolism in skeletal muscle.

Effect of an acute bout of HIIT on Hif-lo and anaerobic
metabolism gene expression. Although strength training in-
duces an increase in the protein levels of Hif-1q, little is known
about the effect of HIIT on the protein levels of Hif-1a and the
expression of the target genes. In this study, we used forcible
swimming exercise as a HIIT model, because it is hard to reach
an extreme high-intensity load in mice with treadmill running
exercises. After a single bout of HIIT, the blood lactate levels
of mice increased to >20 mM. The protein levels of Hif-1a
increased significantly 3 h after HIIT (Fig. 3). The mRNA
expression of Gysl, Hk2, Pygm, Pfkm, and Ldh-a was signif-
icantly increased 3 h after HIIT, and the expression of Hk2,
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Pfkem, and Ldh-a was increased even after 6 h (Fig. 3). There
was no significant increase in Mct4 expression.

Training adaptation of Hif-1o and glycolytic capacity. Next,
we examined whether long-term HIIT changes the basal pro-
tein levels of Hif-1a and the activities of Ldh and Pfk, which
are widely used markers of glycolytic capacity. The mice
underwent 6 wk of training and were compared with untrained
mice. The basal levels of Hif-1a were significantly elevated in
the HIIT group compared with Sed group (Fig. 4). In the HIIT
group, Ldh activity was significantly increased, whereas there
was no change in Pfk activity (Fig. 4). Glycogen is a key
energy source during high-intensity exercise and represents an
important storage form of energy for anaerobic performance.
We found that 6 wk of HIIT induced a significant increase in
muscle glycogen content (Fig. 4). We also measured the exercise
performance of the HIIT and Sed group by exhaustion swimming
test. HIIT group swam significant longer (735 = 64 s) than the
Sed group (289 = 49 s) in the test.

DISCUSSION

In high-intensity exercise, skeletal muscle mainly utilizes
glycogen as a substrate for energy resynthesis. Therefore, it is
considered that muscle glycolytic capacity and glycogen stor-
age are important factors for exercise performance in high-
intensity exercise, as well as mitochondrial capacity. However,
although several studies have investigated exercise-induced
changes in signaling cascades related to aerobic metabolism,
little is known about the molecular mechanism underlying the
changes in anaerobic metabolism. In this study, we showed that
increased protein levels of Hif-1a following EDHB treatment
induced the mRNA expression of proteins involved in anaer-
obic metabolism, as reported in the case of cancer cells (25).
We also showed that HIIT increased the protein levels of
Hif-1a, accompanied by a concurrent increase in the gene
expression of glycolytic and glycogenesis enzymes. Our results
suggest that the enhanced expression of genes related to gly-
colytic capacity after HIIT results from increased levels of
Hif-1a, which is known as a major transcription factor regu-
lating glycolytic metabolism. In recent studies, strength train-
ing increased the protein levels of Hif-1a in humans and mice
models (1, 17). Taken together, Hif-1ao may play an important
role in improvement of glycolytic capacity in sprint training as
well as strength training, and possibly contribute performance
of high-intensity exercise.

The protein levels of Hif-1a are regulated by various path-
ways (24); however, there is little information about the path-
ways involved in Hif-la protein regulation associated with
exercise. In general, Hif-1a is regulated by an oxygen-depen-
dent mechanism, and a correlation between the state of micro-
vascular Po, in muscles and the protein levels of Hif-1a has
been shown (17, 19). However, apart from oxygen-dependent
mechanisms, other mechanisms also regulate the protein levels
of Hif-1a. Prolyl hydroxylase 2 (Phd2) is a major negative
regulator of Hif-1a, and this protein is expressed at higher
levels in elite endurance athletes than in moderately active
individuals (13). Furthermore, the mRNA levels of factor
inhibiting Hif (Fih) and Phd3 are also higher in elite endurance
athletes (13). Thus elevation of basal Hif-1a levels after
long-term HIIT may be mediated by these factors. Hif-la
synthesis is regulated by the mammalian target of rapamycin

(mTOR) pathway, an essential pathway for load-induced skel-
etal muscle hypertrophy (5). Strength training affects both the
mTOR pathway and Hif-1a expression (1, 17). Taken together,
the mTOR pathway may be involved in exercise-induced
increase in Hif-1a.

Some studies have proposed other transcription factor can-
didates to be involved in the training-induced enhancement of
glycolytic capacity. c-myc is a major regulator of anaerobic
metabolism, similar to Hif-1a, and is considered to induce
glycolysis during exercise (7). c-myc is possibly related to the
training-induced transcriptional shift, because conserved bind-
ing sites for Hif-1a are found overrepresented near the con-
served Myc E boxes in glycolytic genes (12). However, the
c-myc protein is very unstable (5), and it was impossible to
detect this protein. Receptor-interacting protein 140 (Rip140)
is another possible regulator of glycolysis in skeletal muscle
(26). Clenbuterol, a 32-adrenergic agonist that induces transi-
tions from slow to fast muscle phenotypes, increases the
protein levels of Rip140 and the activity of glycolysis enzymes
(8). However, since HIIT does not affect the protein levels of
Rip140 (9), Rip140 is not likely to be involved in the adapta-
tion to HIIT.

Last, the use of EDHB for inducing Hif-1a accumulation
may be considered a study limitation. Since EDHB inhibits all
Phds, it is possible that other Hifs or other pathways regulated
by Phds may also be affected. Another study limitation is that
our forcible swimming exercise protocol of HIIT may be a
stressful conditions for mice. Future studies are needed to
confirm HIIT-induced anaerobic adaptations in humans or
using other kinds of physical training such as treadmill running
in rodents.

In summary, we have shown that /) Hif-la induced the
expressions of anaerobic metabolic genes, and 2) Hif-1a pro-
tein content was increased after an acute bout of HIIT and
long-term HIIT in mouse skeletal muscle. Therefore, it is
possible that Hif-1a is one of the key regulators in the HIIT-
induced adaptations of anaerobic metabolism in skeletal mus-
cle. Our data could be a cue to reveal the molecular mecha-
nisms underlying the adaptation of anaerobic metabolism as-
sociated with high-intensity training.
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